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ABSTRACT 

The commutation relations of the algebra of SUg are 

used to construct a simple graphical picture of the irreducible 

representa t ions . The graphs are useful in the reduction of p ro ­

ducts of irreducible representa t ions . A simple systematic method 

for the calculation of the generalized Clebsch-Gordan coefficients 

is also presented. 



I. INTRODUCTION 

In the last few years the attention of e lementary-par t ic le phy­

sicists has been strongly drawn to the group of three-dimensional unitary 
1 

unimodular matr ices SU . It appears that the "e lementary" par t ic les as 

well as an ever increasing number of resonances can ra ther conveniently 

be classified according to representat ions of this group, in par t icular the 

8-dimensional representat ions (pseudoscalar mesons ir, K, K, T| 0 ; vector 

p, M, M, u; baryons S, N, V A° ) and the 10-dimensional one FN _ Y , 
* 2 

H , Z( ?)]. In contrast to the simpler group SU » which plays a role in the 

phenomenon of charge independence and which is almost identical with the 
3 

familiar rotation group, SU and its connection with the symmetr ic group 

is not well known to many physicis ts . Thus an ever increasing number of 

papers which take the mathematical background for granted appear some­

what mysterious to those unfamiliar with the group s t ruc ture . A recent 
4 

review article on Lie groups by Behrends et al. has done much to remove 

this gap in mathematical background; but this paper, covering as it does 

many groups of potential interest and many techniques, still leaves some­

thing to be desired in the specific treatment of SU . This paper in a certain 

sense complements the BDFL paper: the problem of obtaining explicit 

representations and of reducing products of representat ions is t rea ted by 
M. Ikeda, S. Ogawa, and Y. Ohnuki, P rogr . Theoret. Phys . (Kyoto) 

ZZ^, 715 (1959); M. Gell-Mann, "The Eightfold Way, " CTSL Report No 20 
(1961); Phys. Rev. J ^ , 1067 (1962); Y. Ne'eman, Nucl. Phys . 26 22*2 
(1961); Y. Yamaguchi, P rogr . Theoret. Phys. (Kyoto), Suppl. N^.' 11 (1959); 
A. Salam and J. Ward, Nuovo cimento 20, 419 (1961); J. Wess Nuovo 
cimento 10, 15(1960), 

2 

c-,-, ,<^',.,?^^^^°^ '̂"'̂  ''• '^- 2^^"^^i. Nuovo cimento 25, 337 (1962); ibid. 26 622 (1962). ' 

3 

For example, J. Wess, Nuovo cimento _££, 15(1960). 
4 

R. E. Behrends, J. Dreitlein, C. Fronsdal , and B. W. Lee, Revs 
ModernPhys . 34, 1(1962). 



g e n e r a l i z i n g the " r a i s i n g " and " l o w e r i n g " o p e r a t o r t e c h n i q u e f a m i l i a r f r o m 

the s i m p l e t ex tbook t r e a t m e n t of angu la r m o m e n t u m . F o r the s a k e of s i m ­

p l i c i t y , on ly th i s t e chn ique i s w o r k e d out in d e t a i l ; no a t t e m p t i s m a d e to 

give a c o m p l e t e proof of a n u m b e r of r e s u l t s ob ta ined on the w a y . The t e c h ­

n ique could , of c o u r s e , be a d a p t e d for the t r e a t m e n t of o the r L i e g r o u p s , 

but i n v iew of the g r e a t i n t e r e s t in SU^ to the e x c l u s i o n of any of the o t h e r 

g r o u p s , no a t t e m p t a t g e n e r a l i z a t i o n i s m a d e . 

The g r o u p i s def ined by eight g e n e r a t o r s and, a s e s t a b l i s h e d 

by L i e , only the c o m m u t a t o r s of t h e s e g e n e r a t o r s a r e n e c e s s a r y to s tudy 

the p r o p e r t i e s of the g r o u p . F o r e x a m p l e , the r o t a t i o n g r o u p i s ( a l m o s t ) 

c o m p l e t e l y def ined by the c o m m u t a t i o n r e l a t i o n s 

[J . , J ] = i 6., , J , 
L 1 k ik i i 

a m o n g the g e n e r a t o r s of r o t a t i o n s J . . In what fo l lows , we sha l l a s s u m e i t 

to be p r o v e d tha t for SU^, too , the a l g e b r a of i t s g e n e r a t o r s ( i . e . , the c o m ­

m u t a t i o n r e l a t i o n s ) a r e a l l t ha t a r e n e e d e d , and tha t the r e p r e s e n t a t i o n s of 

the a l g e b r a y i e l d the r e p r e s e n t a t i o n s of the g r o u p . A s i d e f r o m the gap — n o t 

p r o v i n g the above s t a t e m e n t and not f i l l ing in the m a t h e m a t i c a l b a c k g r o u n d — 

the p a p e r i s s e l f - c o n t a i n e d and fo l lows the l i n e s l a i d out in S e c . I I , wh ich 

r e v i e w s i - s p i n . 

I I . T H E A L G E B R A OF SU^ 

T h i s s e c t i o n b r i e f l y r e v i e w s the f a m i l i a r a l g e b r a of i - s p i n and 

i t s r e p r e s e n t a t i o n s , to p r e p a r e us for the s o m e w h a t m o r e c o m p l i c a t e d c a s e of 

SU . As w a s m e n t i o n e d in the i n t r o d u c t i o n , the a l g e b r a i s def ined by the c o m -
3 ° 

m u t a t i o n r e l a t i o n s a m o n g the o p e r a t o r s , and in o r d e r to find (i) a l l the 

See for e x a m p l e G. R a c a h , " G r o u p T h e o r y and S p e c t r o s c o p y , 
for A d v a n c e d Study L e c t u r e N o t e s , P r i n c e t o n , N. J . (1951) . 



ei 

operators and (ii) the defining commutation relations of the algebra, we star t 

with the simplest physical realization of the algebra—the one which, in fact, 

made us interested in SU in this connection. We assume that there is an 
2 

entity, the "nucleon, " which has two states, the "proton" state and the "neu­

tron" state, which we shall describe by the two-component wave function 

We can construct an operator which converts the neutron to a proton, 

namely, the raising operator 

_ / 0 1 
% = t 0 0 

which has the property that 

/a \ / b 
^ ( 

Its Hermitian adjoint 

'^+ I b ) I 0 

f /O 0 

{° 
is a lowering operator, since 

.(si'C) 
We can form the commutator of these, and find that 

t'^+' • ^ J = •^a ' (II - 1) 

where 

1 0 
^ 3 = ( 0 - 1 



We a l s o find tha t 

E q u a t i o n s (II - 1), (II - 2), and (II - 3) c o m p l e t e the c o m m u t a t i o n r e l a t i o n s 

a l l f u r t h e r c o m m u t a t o r s such a s | T , [''''•'"_] . [r^.r^ 
and the l i ke 

3' 
which" 'are t h e r e f o r e can be e x p r e s s e d in t e r m s of the o p e r a t o r s T , T_, T^ 

the b a s i c s e t . J n t e r m s of the 2 X 2 m a t r i c e s , t h e r e a r e a l s o p r o p e r t i e s 

s u c h a s 

r ^ = 0, 
+ 

2 = 0 , 

but t h e s e a r e p e c u l i a r to t he t w o - d i m e n s i o n a l r e p r e s e n t a t i o n only. To ob t a in 

o the r r e p r e s e n t a t i o n s of the a l g e b r a , we m u s t u s e only the defining c o m m u ­

t a t i o n r e l a t i o n s (II - 1, 2, 3) . 

It i s c l e a r f r o m t h e s e r e l a t i o n s t h a t only one of the H e r m i t i a n 

o p e r a t o r s r^, ( r ^ + T ), and i ( r_ - T^) can be d i a g o n a l i z e d . The r e p r e s e n ­

t a t i o n of the s p a c e in which t h e s e o p e r a t o r s a c t w i l l t h e r e f o r e be c h o s e n s u c h 

tha t T i s d i a g o n a l — a s t u r n e d out to be the c a s e in the t w o - d i m e n s i o n a l r e p ­

r e s e n t a t i o n wi th wh ich we s t a r t e d . We l a b e l the s t a t e s only by the e i g e n v a l u e 

m of T for the t i m e b e i n g , i . e. , 

a I 
n n , i ) = m j m ) . (II - 4) 

F r o m E q . (II - 2) i t fo l lows tha t 

_ _ I m ) = ( T T + 2 T ) | m ) = ( m + 2) T | m > (H - 5) 

+ 3 + ' + 
3 +1 



so that T I m) is an eigenstate of T with eigenvalue (m + 2) hence the 

appellation "raising operator" for T Similarly T | m ) can be shown to be 

an eigenstate of T^ with eigenvalue (m - 2). If we s t a r t with any state in a 

given representation, we can generate states with higher and higher eigen­

values by repeated application of T until we reach the state with maximum 

eigenvalue I M ) . This state has the property that 

T |M) = 0 . (II - 6) 

Let us now star t with this "highest weight" state, which is 
5 

unique for an irreducible representation, and generate the whole sequence 

of states. We have 

T ]M) = \ ^ | M - 2 ) . (II . 7) 

If the states are chosen to be normalized to unity, i . e . , if 

(m I m) = 1 (II - 8) 

t h e n 

\ 2 = < M | T T | M ) 
1 I + - I 

= ( M l [ T , T ] + T T l M > 

= (M|Tg|M) = M . (II - 9) 

The phases have been chosen such that \^ is real . Note that 

( M - 2 | T | M ) = \ = ( M | T I M - 2 > * . 



H e n c e 

Next c o n s i d e r 

Aga in 

In g e n e r a l , if 

we s ee t h a t 

. J M - 2 ) = K J M ) . ( I I -^O) 

| M - 2 > = X | M - 4 ) . ( I I - I I ) 
I 2 I 

\ ^ = ( M - 2 | T T | M - 2 ) 
P -L - 1 

= ( M - 2 | T T | M - 2 ) + M - 2 

= \ 2 + M - 2 . 

We thus find t h a t 

The " m i n i m u m s t a t e " i s r e a c h e d when \ - 0, i . e. , when 

(II - 12) 

T I M - 2 ( p - l ) ) = \ | M - 2 p > , (II - 13) 
.1 pi 

^ 2 = X 2 + M - 2 ( p - l ) . (II - 14) 
P P - I 

X 2 = p(M - p + 1) . (II - 15) 
P 

p = M + 1 . ( 1 1 - 1 6 ) 



This is the multiplicity of the i r reducible representat ion in te rms of the 

maximum eigenvalue of T . The states may be pictured as forming a l inear 

a r r ay (Fig. 1) and the operators T represent steps from one point to 

^ » o . M 

Fig. 1. The states of an irreducible representat ion of SU 
2 

and the ac t ion of "sh i f t " o p e r a t o r s on t h e m . 

a n o t h e r . T h e r e i s only one s t a t e wi th a g iven va lue of m ; and f u r t h e r m o r e 

only one i r r e d u c i b l e r e p r e s e n t a t i o n is g e n e r a t e d f r o m a g iven m a x i m u m 

s ta te | M ) . We t h e r e f o r e expec t tha t t h e r e e x i s t s one i n d e p e n d e n t o p e r a t o r 

c o n s t r u c t e d out of r , T^ which c o m m u t e s with a l l the T ' S and wh ich s e r v e s 

to d i s t i n g u i s h i r r e d u c i b l e r e p r e s e n t a t i o n s . Such an o p e r a t o r i s , for e x a m ­

p le , the s q u a r e of the i - s p i n . We w r i t e i t as 

Sine 

i t fol lows tha t 

(T T + T T ) + i T 2 . (II . 17) 
T - - T ^ 

[fC.T.] 

C|m> = c | m ) (JJ . 18) 

for all m, i. e. 

The relation between the number of i 
rameters necessary to character ize a 

mentioned by L. C. Biedenharn. Phys. Let te rs Y,T9Tl962") 

of DaramPt.-r= ," "-".-uci 01 invariant operators and the number 
1_^1 ! ' , ^ ' l " " i " ' " " y ' ° character ize an i r reducible representat ion is 



( m l C l m ) = c = (MICIM) . (II - 1 9 ) 

Now use of the cominutation relations yields 

^ 1 p , 1 j _ ( 1 1 - 2 0 ) 

Hence 

c = ( M | C | M ) = ( i M ^ + i M ) 

= i M ( i M + 1)= t(t + 1) (II - 21) 

and the multiplicity is 

p = (M + 1) = 2t + 1 , (11 -22) 

where 2t + 1 is an integer . This is a well-known resul t . The following 

discussion of the representat ions of the algebra of SU^ will imitate the one 

above as far as possible . 

III. THE ALGEBRA OF SU 
3 

The generalization from SU^ to SU^ consists in enlarging 

the set of opera tors T , Tg of Sec. Il.to one which "shif ts" the positions of 

three objects, say the proton, neutron, and Umbda (as in the symmetr ic 

Sakata model)^ in the wave function jn j . The simplest representat ion of 

the shift opera tors by 3 x 3 mat r ices is the set 



10 

^ 0 1 0\ , /O 0 0 

' ^Mo 0 0/ ' ' 'Ho 0 0 

/O 0 1\ ^ /O 0 0\ 
E =4> 0 0 0 , E = -7T 0 0 0 , ( I I I - 1) 

^ /o 0 ô  

^3 = ̂  ° ° ' 

\ 0 0 Ol 

The factor 1/ N/6 is inserted in order to make the notation conform to the 
4 

canonical notation of Behrends et al. 
If we introduce the matr ices 

/ I 0 0\ (III - 2) 

we can easily derive the set of commutation relations which completely 

defines the algebra. These are 

[E , E ] = 0, fE , E 1 = 0, 

t ^ x ' ^ - 2 ] = - ^ E _ 3 , [ E _ ^ , E J = - i - E 3 , 

[ ^ ^ ' ^ 3 1 = ^ ^ 2 - [ E _ ^ , E _ J = - - ± E _ ^ , 

[ E , , E _ J = 0, [ E . , . E J = 0 , 

^ 2 - ^ 3 ] ^ ° ' F , , E 1 = 0, 

(ni - 3) 

P , ' E . , . ] = :77E 2 ' - . 3 J = : 7 ^ E ^ , [ E _ ^ , E J = - - E _ ^ 
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Fur ther 

F i ' ^ . J = 7 3 « i ' 

rE E i - - ^ H + i H (in - 4) 
[E„, E I - ^ H^ + j H ^ , 

P s ' ^ . s l - I j ^ ^ l - ' * ^ 

and 

[ H x . E J = ; i E i . [H. ,EJ=0 «/"3 

[ H . . E , ] = ^ E „ [ H „ E , ] = 4 E 3 , (III - 5 ) 

[ H , , E 3 ] = - ^ E 3 , [H3,E3] = | E 3 , 

[H,, H J = 0. 

E = E + . (Ill - 6) 
- a a 

The relat ions (III - 3) —(III - 6) completely charac ter ize the algebra. Re-

Note that 

peated commutators , e. g. 

opera to r s . 

1 ' 
E , [E , H ] and the like do not lead to any new 

Our task now is to construct representat ions of the algebra. We 

first note that we may choose our representat ion such that H^ and H^, 

which commute with each other, are simultaneously diagonal in i t . We 

label the states in a given i r reducible representat ion by the eigenvalues 

of H and H , and denote them by |m^, m^>. Then 



12 

1^1 | ™ i ' ™ 2 ' * = "^1 l ^ ^ i ^ n i a ) 
(III - 7) 

Hg Im^^m^) = m^ j m ^ . m ^ ) . • 

As is suggested by the explicit form of the special representat ion in Eqs . (Ill - 1) 

the operators N/6 E ^ , \lb E_^, and 2 \/3 H^ obey the same commutation relations 

as T . T , and Tg and thus form a sub-algebra. The invariant C takes the form 

T 2 = 3 (E3_E_^ + E _ ^ E ^ ) + 3H^= ; (III - 8) 

and it is easily verified that 

[ T ^ E ^ J = 0 , 

[ T = , H J = 0, (III _ 9) 

[ T ^ Hg] = 0 , 

whereas 
[T^, E , g ] ^0, 

Thus T 2 is not an invariant operator. It may, however, be diagonalized 

simultaneously with H^ and H^; and the states [m^^m^) should actually be 

written as Im , m „ ; t ) w i t h 
i - " 

T^ |m^ ,mg; t> = t ( t + 1) [m^^m^; t ) . (HI . lo) 

The form of the eigenvalue will become evident la ter . For the t ime being we 

will suppress the dependence on t , and only use it later to classify states 

that may, even within a given irreducible representa t ion, have the same 

values of m., and m . 
1 2 
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It is clear from Eqs . (Ill - 5) that since 

H x E i = E j H , + ^ 
^3, 

H g E ^ = E ^ H g , 

E^ ra i ses the value m^ by I/N/S but leaves m^ unchanged. The commutation 

relations for H^, H^ with E^^, E^^ imply the propert ies exhibited in Table I. 

TABLE I. The "shifting" propert ies of the generating operators E_j_ .̂ 

Operation 
by 

E l 

E . i 

^ 2 

E . 2 

E 3 

E - 3 

" ^ 1 

eigenvalue 

ra ised by -jr 

1 
lowered by —pr 

N/3 

ra ised by — 
2\/3 1 

lowered by -—^ 

lowered by 
2N/3 

ra ised by — 
2 N/3 

m g 

eigenvalue 

unchanged 

unchanged 

ras ied by -j 

lowered by -j 

ra ised by -j 

lowered by j 

The proper t ies may be exhibited graphically on a plot (Fig. 2) with 

coordinates m^ and m^. Because of the canonical normalizat ion, the opera­

tors act along the sides of equilateral t r i ang les . This graphical r ep resen ta ­

tion of the operators will be used extensively. 
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'2 I , 

*^ E 

1 
Z\l3 

-^-
J_ 3 

Z\l3 

_2_ 

Fig. 2. Graphical representation of "shift" operators in m^rtig plane. 

A final remark is in order; one can easily check that the commu­

tation relations are invariant under the replacement 

H, i H "^^ H 
-2H^ - — Hg, 

H 2 ' = f H , - i H , , (III - 11) 

E , 

i . e . , under a rotation of Fig. 2 through 120°. The implications of this a re 

that not only do [E^, E . ^ , {i/^T^) H J form a sub-algebra (SUg) but so also 

do (E_g, Eg, - i H^ - iN/3 Hg) and the set obtained by a 240° rotation. A linear 

combination of E^ and Eg may also be used to generate a sub-algebra . ^ 
7 ' ' 

B. D'Espagnat and J. Preutki , Nuovo cimento 24, 497 (1962). 
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IV. THE REPRESENTATION SPACE 

In this section, a graphical method will be used to exhibit some 

of the proper t ies of the representat ion space, and in par t icu la r , the possible 

va lues , m^ and mg , of the eigenvalues of H , and Hg. As was shown in Sec. I l l ; 

the operators E ^ , , E^g, and E^g are shift operators which t ransform a given 

state into one with eigenvalues such that it is displaced by a distance I/NTS along 

one of the three sides of an equilateral t r iangle. The states therefore must lie 

on the sites shown as solid c i rc les in Fig. 3. The direction AB will be called 

the "1 l i n e , " AC the "2 l i ne , " and AD the "3 l i ne . " 

V V V V -v_—^A yc 

/ \ / \ / \ / \ / \ / \ / \ 

./ \ / ' V' \ / ' \ / V V \ 
Fig. 3. Possible sites of states in the m î̂ mg plane. 

For finite-dimensional represen ta t ions , only a finite number of 

sites will be occupied, and our first task will be to learn something about 

the distribution of occupied s i tes . As in our discussion of SUg, we note that 

there will be one or more points with maximum value of m , - p o i n t s of 

dominant weight. If there a re several of them, we choose the one with the 

highest value of m g - t h e point of highest weight. Let the "coordinates" of 

this point be denoted by (M^,M3). We shall assume that attached to the 

po.nt of highest weight there is only one s t a t e ' |M, ,Mg>. Then the condition 

that it is the state farthest to the right implies that 
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E ^ |M^Mg> = E g | M ^ M g ) = E . 3 | M ^ M g ) = 0. (IV - 1) 

Suppose tha t in addi t ion 

E_j_ |M^Mg> = 0; (IV - 2) 

then it follows that 

E . g |M^Mg> = 'S [ E _ 3 , E_^] | M ^ M g ) = 0 (IV - 3) 

and 

E^g j M ^ M g ) = K i 6 [ E _ ^ , E g ] ]M^Mg) = 0 . (IV - 4) 

Thus E I M M . , ) = 0 for a l l a and f rom the c o m m u t a t i o n r e l a t i o n s for 

[ E , E 1 it follows tha t 
a - a 

M^ = Mg = 0. (IV - 5) 

Thus (IV - 2) fu r the r r e s t r i c t s the s t a t e to be one tha t i s a n n i h i l a t e d by a l l 

o p e r a t o r s . The s t a t e m u s t t h e r e f o r e be the u n i t a r y s i ng l e t s t a t e . 

If 

E . ^ [M^Mg) ^0, (IV - 6) 

t h e r e a r e at l e a s t two poin ts on a h o r i z o n t a l l ine (the 1 l i n e ) . It can now be 

shown tha t e i t h e r 

Eg |M^Mg> ^0 (IV - 7) 

or 

E . g |M^Mg> 7^0 (IV - 8) 

or both a r e t r u e . T h i s i s done by noting t h a t 

E_^ |M^Mg> = >v/6 [ E g , E_g] |M^Mg> ?^0, (IV - 9) 

which could not be t r u e if both E 3 and E_g a n n i h i l a t e d [M^^Mg). H e n c e the 

b o u n d a r y of the d i s t r i b u t i o n of s i t e s n e a r the s t a t e of m a x i m u m we igh t m u s t 



be one of the three cases shown in Fig. 4. 
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IM^Mg) 

>lM^Mg> 

Mj^Mg) 

Fig. 4. Boundary of the distribution of sites near the state of maximum weight. 

Next we would like to show that the boundary of t:he set of si tes 

cannot be concave. The occurrence of a situation such as exhibited in Fig. 5 

F ig . 5. A concave boundary in the m^mg plane. 

would imply that 

E^ |A> = 0. (IV - 10) 



Now let 

Then 

E . g |B) = X | A ) , (IV - 11) 

E3 |C> = a- | A ) . (IV - 12) 

o-\ = {B|EgEg|C> = (BlEgEglC) =0 (IV - 13) 

so that either \ or cr (or both) vanish, provided | A ) is nondegenerate. Since 

the boundary assumed in Fig. 5 leads to a contradiction, it follows that such 

a concavity cannot occur in the boundary. 

Suppose now that at the site A there a re two states such that 

and 

Then 

and of course 

E .g | B ) = K | A ' > (IV - 14) 

( A | A ' ) = 0. (IV - 15) 

Eg | A ' )= 0 (IV - 16) 

E^ I A ' ) = 0 . (IV - 17) 

The next step is to argue that this implies |B ) can never be reached from 

I A ' ) ; and this contradicts the assumption that | A ' ) belongs to the same 

irreducible representation as | B ) . F i r s t we note that the simplest non-

direct way from A to B is via D. However 

E i E g | A ' ) = ( E g E ^ + ^ E g ) | A ' ) = 0 (IV - li 

by (IV - 16) and (IV - 17). It remains to be proved that all paths reduce to 

the one via D. This is done with the help of (i) the relations 

[ E l . E g ] = [ E „ E . 3 ] = [ E g , E , 
(IV - 19) 
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w h i c h , in t e r m s of p i c t u r e s , i m p l y t he d e f o r m a b i l i t y of p a t h s l ike ABC into 

ADC a s in F i g . 6 , (ii) t he o t h e r c o m m u t a t i o n r e l a t i o n s w h o s e g r a p h i c a l 

i m p l i c a t i o n i s t h a t , for e x a m p l e , MNO i s equ iva l en t to M P O p lus M O , and 

(iii) t he fact t h a t 

E E l m , m g ) = \ ( m ^ m g ) I m ^ m g ) (I"^ " 
a - a I -'- a. ' 

w h o s e g r a p h i c a l m e a n i n g i s t h a t , s a y , a s t e p ST followed by TS i s e q u i v a l e n t 

to n e v e r l eav ing S a t a l l . The r e a d e r can e a s i l y conv ince h i m s e l f w i th t he 

h e l p of ( i ) , ( i i ) , and (i i i) t h a t a l l p a t h s l inking A to B in F i g . 5 r e d u c e to 

A D B . 

D ^ ,„N 
• • » P -^c « 

« » 0 
, / / \ 

«' tf « 1 M«( ^ O 

• \'P * 

I / 
A fe 

o • • 

S 

Fig. 6. Paths in the m^mg plane. 

For the purposes of this paper , this is enough "proof" that the ^ 

boundary must be concave. Figure 7 shows some possible boundary shapes. 

We shall show later that all such polygonal boundaries must be invariant 

under a rotation of 120°, a resul t which is not surprising in view of the 

'After this work was finished, it was pointed out to me that ^ ^ " ^ ^ 1 ^ -
considerations appear in a paper by E . P . Wigner, Phys . Rev. | I . 1°^ 
(1937). I wish to thank Prof. G. C. Wick for this observation, which was 
communicated to me by Prof. J. J . Sakurai . 
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Fig. 7. Possible shapes of the boundary of the distribution of s i tes . 

corresponding symmetry of the algebra. It is clear that all inter ior points 

represent states; a "hole" in the middle is excluded by the argument used 

to prove the convexity of the boundary. 

We have not yet discussed the multiplicity of states (in a given 

irreducible representation) at a given site in the (m^,m ) plane. We shall 

first show that at the boundary points the multiplicity is one, if it is assumed 

there is only one state of highest weight. For the situation pictured in F ig . 8, 

we have 

Xi | B ) = E . g M ) . (IV - 21) 
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Fig . 8. Some of the forbidden steps a re denoted by dotted l ines . 

If there is to be another state | B ' ) at the same site as |B >, we must be able 

to reach it from |M> by another path, i . e . , for example E . 3 E _ J ^ | M ) should 

not b e e q u a l t o \ g | B > . However, if | B ' ) s E . g E . J M >, then it follows 

that \^ 
E . g E . , | M ) = ( E . , E . g + 4 E . g ) l M ) = - E . g | M ) = - | B ) . (IV - 22) 

This implies that |B> is a 'multiple of | B ' ) . Similar ly, another path from M 

to B could be represented by 

| B " ) = E ^ E . g E . ^ [ M ) . 

However, it is a lso t rue that 

E ^ E . g E . j M ) = E , E . , E . g | M ) 

= X , E , E . , | B ) 

= X J E , , E . J | B ) (IV - 2 3 ) 

which is proportional to |B> and again implies that | B " ) is a multiple of \B). 

To prove the nondegeneracy of a boundary point in a less exhaustive 

way, we could assume that at the site B there a re two states |B^) and | B g ) , 

with 



|B^) = c^ | M ) , (IV - 24) 

Eg iBg) = Cg | M ) . 

However, from this it follows that 

I*) = Cg |B^> - c^ |Bg> (IV - 25) 

has the property that 

Eg 1$) = 0. (IV - 26) 

It is also t rue , however, for any state at the site B that 

E l 1*^ = E.g ]*) = 0. (IV - 27) 

Conditions (IV - 27) and (IV - 26), however, imply that I*) is a state of 

maximum weight; and this contradicts the asser t ion that I M ) is the only 

such state. This argument can be carr ied out for all boundary points , since 

by "carrying" the assumed degeneracy along the boundary in a counterclock­

wise direction to the site B , we reduce all such cases to the one discussed 

above. 

The multiplicity of interior points need not be one, but it turns 

out to be one whenever the boundary is t r iangular . Consider the situation 

exhibited in Fig. 9. We have 

|A> = E . g E . ^ | M > ; (IV 

Fig. 9. Points in the vicinity of the max imum^e igh t point for a t r iangular 
boundary. 
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and since 

[ E . , , E . g ] = 0 , 

this is equal to E . g E . ^ | M ) , SO that whether we go along MBA or MCA we 

get the same s ta te . In the same manner we can convince ourselves that no 

mat ter what path we choose, it always leads to the same state | A ) . 

It is not hard to use this information to prove that the state | D ) is 

unique, and s imilar ly for the points on the next layer of points (lying on the 

dotted line in Fig. 9). We can then s tar t all over again to prove the s ta te­

ment about the next layer beyond that , e tc . , e tc . 

If the boundary is not tr iangular (see Fig. 10), the next layer of 

points has two states at each s i te . To show th i s , define 

1A,>-E. , |M), 
(IV - 29) 

lAg) = E . g E 3 | M ) . 

Fig . 10. Points near maximum point for a non-triangular boundary. 

With the help of the commutation relations we readily show that 

< A i | A , ) = ^ M , , 

(A, l A g ) = - V f M g - ^ M Y (IV -30) 
1 ' ^ 2 N/6 V N/3 V , 

< A g | A g ) = i ( - i . M , - M ^ ( - L M , + M g . 3 ) . 
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The states lA ) and lAg) will be linearly dependent if and only if there 

exists an a such that 

1$) = cos a |A^) + sin a |Ag> = 0. (IV - 31) 

There will be a solution provided 

(Ag|Ag) ( A J A J - (AjAg)^ = 0, (IV - 32) 

i . e . , provided 

(M^ + N/3 Mg)(M^ - N/3 Mg){M^ + -v/S) = 0. (IV - 33) 

Now 

Mj^ = ± N/3 M g • 

corresponds to the triangular cases . To show th i s , note that for a triangular 

case E + g I M ) = 0 or E^.3 I M ) = 0; i. e. , the requirement ± (M^/2 N/3) + | Mg = 0 

holds for one sign of the first t e rm. If M^ T̂  + N/3 Mg, there is no solution 

(M^ S 0). Hence there are a^ least two independent s ta tes . 

To show that there are no more than two, note that if one of the 

states is 

|A^> = E . ^ | M ) (IV - 34) 

then the other may be chosen as 

|A^'> = ( \E_gE3 + E.^) |M) (IV - 35) 

so that it is orthogonal to IA ), i . e . , 

( A J | A ^ ) = 0. (IV - 36) 

On the other hand 

( A J A J ) = <M|EJAJ ). 
Also 

E J A ^ ' ) = p |M). 
Hence 

p = 0, 
i . e . , ^ • 

E l | A / ) = 0. (IV - 37) 

file:///E_gE3
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If there is a third independent s ta te , it may be chosen orthogonal to both 

I A ) and |A^'>. If this state is denoted by | A ^ " ) , it obeys 

This implies that 

and consequently 

< A , | A ; ' ) = < A , ' | A / ' ) = 0 . , (IV - 38) 

E , | A ^ " ) = 0, 

E . 3 E 3 | A / ' ) = O, 

E g E . 3 l A "> = 0. 

This , however, implies that 

E j A / ' > = E g | A , " ) = E . g | A / ' > = 0 (IV - 39) 

which is the condition that |A^"> be a maximum state. Since | M ) is the only 

such s ta te , there cannot be more than a two-fold degeneracy at the site A. 

We may now s tar t at the site A and by moving along the line paral lel 

to the boundary (Fig. 10) show that at the site B there a re exactly two s ta tes . 

This can be continued all around the layer one step in from the boundary. 

It is only a little more tedious to show that the multiplicity at the 

sites of the next layer (X, Y, Z , W in Fig. 10) is th ree . In fact the mul t i ­

plicity increases at each step until the layer has a tr iangular shape, after 

which the multiplicity ceases to inc rease . A simple way to visualize this is 

to view the boundary as the base of a truncated pyramid and the successive 

layers as contour lines on it . Then the top of the pyramid is always a t r i ­

angle, and the multiplicity increases with altitude. 

These last statements have been proved here only for special ca ses . 

They should be easy to prove quite generally by use of some powerful 

techniques due to Weyl,^ but such depar tures from a purely pract ical d i s ­

cussion of the representa t ions is outside the scope of this paper. 

^See references in the review paper of R. Behrends et a l . (reference 4). 
See also the reference quoted in footnote 8. 
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The degenerate states may now be labeled by their i spin, i. e. , 

by the quantum number T^ of Eq. (Ill - 8) which may be written 

T2 = 3(E^E_^ + E.^E^) + 3H^^ 

= 6 E . 1 E 1 + 3H-L^ + N/3 H^ 

= 6 E . ^ E ^ + \/3 H^ (\/3 Hĵ  + 1). (IV - 40) 

The state I M ) is an eigenstate of T2. In fact, since 

E ^ | M ) = E^ |M^Mg) = 0, 

it follows that 

T^ jM^Mg) = N/3 M^ (\/3 M^ + 1) |M^Mg). (IV - 41) 

The states E . ^ I M^Mg>, (E.^)^ |M^Mg), • • • , e t c . , a re (aside 

from normalization constants) the other states that belong to the i-spin 

multiplet of which iM^Mg) is the highest member . Clearly the multiplicity 

is 2t + 1; i . e . , in te rms of M^ it is (2 N/3 M^ + 1). The state |A^) is part of 

this multiplet. The state |Aj^'>, which is orthogonal to lA^) and which 

satisfies 

E i | A j ) = 0 , 

is also an eigenstate of T2. The value of m^ at the site A is M - i/\[3, so 

that |A^ ) is the highest member of an i-spin multiplet of multiplicity 

2[«j3(M^ - 1/N/3)] + 1 = 2N/3 M ^ - 1. 

The general features are perhaps best i l lustrated by examples 

(Fig. 11). In the next section we shall work out a formula for the multiplicity 

once the shape of the boundary is given. Note that there is only one t r i ­

angular boundary on a given pyramid—the triangle is the top surface of the 

pyramid. For the hexagonal figures, e .g . , cases (b) and (d), the tr iangle 

reduces to a point. Thus in all cases there is only one T = 0 state per 



27 

. . T = 2 

• T = 0 

(a) n = 2 + 1 = 3 

• « T = -

« @ « T = 1, 0 

• • T = -

(b) n = 2 + 4 + 2 

• T 

• « 

• e 

( c ) n = 4 + 3 + 2 + l 

2 

T = 1 

T = l 
2 

T = 0 

: 10 

9 • • T = 1 . 

a ® ® • T = | , i 

® d ( ^ ® • T = 2 , l , 0 

• (D ® • T = | , | -

• • • T = 1 

(d) n = 27 

• • S O * 

• ® ® ® ® • T - ^ 1 
'• Z' 2 

® (^ ® (̂  

® (§) # ® 

• @ (^ ® <* 

O ® ® « 

• • • 

® • T = 3, 2, 1 

i l l 
2 ' 2 ' 2 

2 , 1, 0 
2 i 

^ " 2 ' 2 

(e) n = 60 

Fig . 11. Some examples of patterns of i rreducible representa t ions . Points 
r ep resen t multiplicity one, points with one circle represent multiplicity 
two, e tc . 
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1 0 
irreducible representat ion, this state lying at the tip of the tr iangle (along 

the vertical axis). We shall return to this point la te r . 

V. THE MULTIPLICITY OF AN IRREDUCIBLE REPRESENTATION 

We begin by considering the simplest representat ions correspond­

ing to the two graphs shown in Fig. 12. In each case , the tip of the triangle 

( M i - j | , M g ) (M^,M^) ( M i ' - 2 ^ . M ^ ' + i ) 

3 

<^i-^'^.4 ( M i ' - ; j | , M g ' ) (MJ,Mg') 

Fig. 12. The representations ^ and 3' 

corresponds to an iso-singlet s tate, i. e. , 

t = M - - i ^ = 0. 
^ 2N/3 

1 

Hence 

M, = M ' -
^ 1 2N/3 

In the first case (representation labeled by 3) we have 

(V - 1) 

E±3 l ^ i M g ) = 0, (V - 2) 

10 
The fact that there is only one T = 0 state per irreducible represen ta ­

tion was pointed out to me by Prof. M. Bolster l i . 
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i . e . , .^ 

[ E 3 , E . 3 ] |M^Mg> = (^ ^ M , + i Mgj |M^Mg> = 0. 

Hence 

M = - . (V - 3) 
2 6 

In the second (representat ion labeled by 3 ) we have 

E^g |M^Mg) = 0, , ( V - 4 ) 

i . e . , 

[ E g , E . g ] | M / M g ' ) =(^^^^ 

Hence 
M ' = - - . (V - 5) 

2 6 

Just as all representat ions of SUg can be obtained from the 

reduction of products of the two-dimensional representation (all i-spin states 

can be built out of products of doublets), so can all representat ions of the 

algebra of SU be built up out of products of ^ and J,' . In a product of the 

[ E g , E . g ] I M / M g ' ) = f - ^ M ; + i Mg ' j lM, 'Mg ' ) = 0. 

3 

form 
(3)" ® (3"") 

a „ , ,* b ^y . ^) 

there will be many irreducible representa t ions , but the one with highest 

weight will have 
a + b 

M, = p-
^ 2\/3 

(V - 7) 
a - b 

Mg = - ^ . 

The i rreducible representat ion with this as the highest weight is the one that 

we want to study. 

For a given (a, b) , what is the shape of the polygon? The i-spin 

multiplet to which the state of highest weight belongs has 

t = ^ 3 M , = ^ ( V - 8 ) 
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so tha t t h e r e a r e (a + b + 1) po in t s on t h a t l i n e . 

How far up can we go? We have 

a + b a - b 
0 

and w r i t e 

Then 

la + b a - b 

I 2Nr3' 6 

Z'S ' 6 

a + b - 1 a - b + 3 

2N/3 

a + b a - b 

Y^' 6 

a + b a - b 

2Ni3 ' 6 

E E 
- 3 3 

a + b a - b 

2Nr3 ' 6 

[ E . 3 > E g ] 
a + b a - b 
2 - ^ ' 6 

Next we w r i t e 

la + b - l a - b + 3 

2\f3 

[a + b - 2 a - b + 6 

I 2 N/3 ' 6 

Then 

(V - 9) 

(V - 10) 

Xg^ = ( ^ 

= ^ 1 ^ 

i m i l a r l y 

^ / = 

X = = 

+ b 

2N/3 

b 
+ — 

K' 

X ^ 

- 1 a 

- 2 
6 • 

b -
+ 6 

b 
+ — 

- b + 3 
6 

4 

- 2 ( p - l ) 

[ E . g , E 3 ] + E 3 E . 3 
• a + b - 1 a - b + 3 

2 ^ ' 6 

Hence 

X p ' ' = ^ [ b + ( b - 2 ) + • . . + ( b - 2 p + 2 ) ] = P ( L l P ± l ) . (V - 11) 
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Hence \ = 0 when p = b+ 1, so that we can go upward b s teps . 
P 

In the same way we can show that we can go down a steps along 

the 2 l ine. At the top line 

_ a + b - b _ a 

i . e . , there a re (a + 1) s i t es . At the lowest line 

a + b - a _ b 
" " ^ ^ 2Nr3 ^ ^ ' 

i . e . , there a re (b + 1) s i t es . 

S imi lar ly , we can show that the figure has symmetry under a 120 

rotation. Figure 13 below shows the shape of the figure. Let us take a & b . 

A 

Fig . 13. The polygon for the representat ion (a, b). The top of the pyramid 
is the equilateral t r iangle ABC. 
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(The r e v e r s e choice would be j u s t t he s a m e f igure u p s i d e down. ) At t h e 

lowes t l eve l of the p y r a m i d , the n u m b e r of s t a t e s i s 

(a+l) + (a+2) + ( a + 3 ) + - • • + (a+b) + (a+b+1) + (a+b) + • • • + (b+3) + (b+2) + (b+1). 

At the next l e v e l , the n u m b e r is 

a + (a + 1) + • • • + (a + b - 2) + (a + b - 1) + (a + b - 2) + • • • + (b + 1) + b . 

And at the n e x t , 

(a - 1) + • • • + (a + b - 4) + (a + b - 3) + (a + b - 4) + • • • + (b - 1), 

e t c . The sequence ends wi th a t r i a n g l e when the l a s t n u m b e r in the s u m is 

un i ty , c o r r e s p o n d i n g to the t ip of the t r i a n g l e . T h i s o c c u r s a f t e r N = b + 1 

l i n e s . 

The n u m b e r of s t a t e s in the f i r s t l ine is 

(a + b + l)(a + b + 2) (a + b)(a + b + 1) a(a + 1) b(b + 1) 
2 2 " 2 " 2 

/ , .4.1,4. i^'^ 3-(a + 1) b ( b + 1) - ( a + b + 1 ) - ^ - - — ^ .. 

The n u m b e r of s t a t e s in the second l ine is 

(a + b - 1 ) ^ - ' " - ^ ' - ^ . ( b - l ) b 
' 2 2 

The n u m b e r of s t a t e s in the nth l ine i s 

(a + b + 3 - 2n) ' ' - (=̂  + I - ") (a + 2 - n) _ ( b + 1 - n)(b + 2 - n) 

= 3n== - 3 (a + b + 3)n + (a + b + 3 ) ' - ' " + ^ » " + ^ > - (1^+^Hb + 2) 

^ S . • (V . 12) 
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T h e m u l t i p l i c i t y i s 

b + 1 
y S = I (b + l ) (a + l ) (a + b + 2 ) , (V-13) 

1 " • n = 1 

a w e l l - k n o w n f o r m u l a for t he d i m e n s i o n a l i t y of a r e p r e s e n t a t i o n l a b e l e d by 

( a , b ) . 

T a b l e II g i v e s t h e i s o t o p i c con ten t in an ( a , b) r e p r e s e n t a t i o n . T h e 

T A B L E I I . 

Y 

T h e i s o t o p i c con ten t of an i r r e d u c i b l e r e p r e s e n t a t i o n . 

V a l u e s of T 

a - b a 
^ ^ + ^ 2 

a - b , , , a + 1 a - 1 

a - b a + b - 2 a + b - 4 a + b - 6 
_ _ + 2 

a - b 
+ 1 

2 ' 2 ' 2 

a + b - 1 a + b - 3 a + b -
2 ' 2 ' 2 

a + b a + b - 2 a + b - 4 
2 ' 2 ' 2 ' 

a + b - 1 a + b - 3 a + b -

5 

5 

a 

J 

1 

-

a • 

a • 

b 

- b + 
2 

- b + 
2 

2 

1 

3 

a - b 
3 2 ' 2 ' 2 •" ' ' ' 2 

a - b a + b - 1 a + b - 3 a + b - 5 a - b - 1 
~^i~ ' ^ 2 ' 2 ' 2 ' • • • ' 

a - b a + b - 2 a + b - 4 . a - b - 2 
" l 2 2 ' Z ' ' Z 

a - b b 
a 2 



t a b l e u s e s the no ta t ion 

Y = 2 m . (V - 14) 

This checks wi th the r e q u i r e m e n t s t h a t (i) for a u n i t a r y s i ng l e t (Mg - 0) 

the h y p e r c h a r g e should be z e r o and (ii) the o p e r a t o r s E + g , E^g change the 

h y p e r c h a r g e by un i ty . 

T h i s i s the fo rm for a 55 b . Note the a s y m m e t r y about the l ine 

Y = (a - b ) / 3 on which the s t a t e of h ighes t we igh t l i e s . As one r e a d s up f rom 

th i s l i n e , the n u m b e r of m u l t i p l e t s d e c r e a s e s ; but a s one r e a d s down, i t r e m a i n s 

cons tan t unt i l the i s o - s i n g l e t i s r e a c h e d . T h e r e a f t e r the n u m b e r of m u l t i p l e t s 

d e c r e a s e s unt i l t h e r e i s only a s ing le o n e , a s i l l u s t r a t e d for a n o t h e r p a r t i c u l a r 

c a s e in F i g . 14. It w i l l be shown in S e c . VII that the i s o - s i n g l e t a l w a y s 

Y = 3 T = - A ® ® ® ® A 

Y = 2 T = 3 , 2 

Y = l T = ^ , i , l 
Z' 2' 2 

Y = 0 T = 3 , 2 , 1 

• e c 9 9 e 

® ® o 9 9 o 

4$ ® ® ® ® ® 

Y = - l T = i , 1 , i 

Z' Z' 2 

Y = -2 T = 2 , 1, 0 

3 1 
Y = -3 T = - , -

Z' 2 
Y = - 4 T = 1 

9 ® O 9 ® 

e a 9 

e s s 

F i g . 14. Mul t ip l i c i t i e s for the ca se a = 5 , b = 2 (N= 81) . 

o c c u r s a t 

•0 = - 3 < ^ - b ) - (V - 15) 
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It i s a l s o e a s y to s e e tha t the " h e i g h t " of the t r u n c a t e d p y r a m i d is g iven by 

b a n d the s ide of t he e q u i l a t e r a l t r i a n g l e wh ich f o r m s i t s top h a s l eng th a - b 

( s e e F i g . 13). 

VI . T H E R E D U C T I O N O F PRODUCTS O F R E P R E S E N T A T I O N S 

In p h y s i c a l a p p l i c a t i o n s , the r e d u c t i o n of p r o d u c t s of i r r e d u c i b l e 
1 1 

r e p r e s e n t a t i o n s i s p a r t i c u l a r l y i m p o r t a n t in obtaining decay w i d t h s . We 

s h a l l f i r s t d e v e l o p the g e n e r a l m e t h o d and then i l l u s t r a t e it by c a r r y i n g out 

s o m e r e d u c t i o n s , in p a r t i c u l a r the _8̂  ® ^ . We sha l l obta in the wave funct ions 
2 AV* 

found by G l a s h o w and S a k u r a i and a l s o obta in m a t r i x r e p r e s e n t a t i o n s of the 

E in the 8- and 1 0 - d i m e n s i o n a l r e p r e s e n t a t i o n s a s an i l l u s t r a t i o n of t he 

p r e s e n t m e t h o d . 
C o n s i d e r f i r s t the b a s i c s t a t e s J^ and ^ ' ( F i g . 15). It is r a t h e r 

(0, 4) 

F i g . 15 . The s t a t e s 3 and _^ wi th t h e i r m ^ m g l a b e l s . 

s i m p l e to w o r k out the ef fec ts of the o p e r a t i o n s of E ^ ^ on the v a r i o u s s t a t e s . 

S ince 

2Nr3 ' & 
E_. \-z^, ±ir )= x | - T n ^ . ^l/' 2^J3' 

(VI - 1) 

^^See r e f e r e n c e 2; a l s o S. G lashow and A . R o s e n f e l d , P h y s . R e v . L e t t e r s 

10 , 192 (1963) . 
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it follows that 

2 ^ ' - 6 r i ^ - l |2Nr3' " 6 

(4'4|t^.'^-x]|i4'*6;=i- (̂ -̂̂  
Hence 

1 
\/6 

The value of X is the same for all legs of the t r iangle , because of the symmetry 
o 

under 120 rotations. 

To determine the signs, note that for 3 

^ ^ \ - E E F I ^ ^ 
r ^ ' 6 / - ^ 2 E - 3 E - i | 2 ^ 3 > 6 

E . , l E , E „ + E .,)1 ^ , -
- 1 - 3 N/6 - y I 2 N / 3 ' 6 

1 i^ 

N/6 " I Z^^^' 6 X ^ I T ^ . ^ ) . (VI -3) 

Hence 

For 3 

X l ^ ) . ^ . (VI - 4 , 

^ _ i \ - E E F I ^ - ^ \ 
2 ^ 3 ' • e Z - ^ l ^ - s E s I ^ . . -^) 2 N / 3 • 

1 ^ M 1 1 ^ ^ A ^ 3 E - 2 - ^ E . ^ ; | — - ± ) 

- i ^ ' l i ^ ' - i ) - (VI-5) 
Hence 

( 3 * ) _ 1 
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The mat r ix elements of E^ in ^ w i l l be represented by 

in which the states a re simply labeled by (D , D^, S^) (doublet, singlet) 

and the ma t r ix elements in 3 by 

Thus , for example , 

K )̂ 

«o 
0 

0 

0 

6 

0 

0 

0 

"•o 

1 

0 

0 

(VI - 6) 

e tc . 

We use the notation of J. J . Sakurai , Proceedings of the International 
Summer School of Physics at Varenna (to be published). 
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If we take the direct product of two representa t ions , the wave 

functions will be 

| m ^ , m g ) 

where 

| m , W , m ( ^ ) > X | m ( = ) , m , ( ^ ) ) , 

( l ) ( 2 ) 

m^ = m^^ ' + m^^ 

( 1 ) 
+ m. 

( 2 ) 

(VI - 7) 

(VI 

A simple way to obtain the sites of the product wave functions is to draw lines 

from the origin to the states in one representation and vectorially add the same 

"weight diagram" of the second representation to each state of the first one. 

The weight diagrams for 3 and_^ are shown in Fig. 16 and the addition of the 

weight diagrams in 3 ® 3 is shown in Fig. 17. 

3 3 
/WW 

Fig. 16. Weight diagrams for 3 and 3*". Fig. 17. Addition of weight 
diagrams in 3 ® 3. 

It is clear that the product is not i rreducible, because for an 

irreducible representation the boundary points have multiplicity 1. In this 

example the reduction is easy to car ry out if we first take the boundary points 
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and see what is left over . The remainder is shown in Fig. 18; i . e . , 

^ 8 3, = 6 _ © / . (VI - 9) 

The remainder for 3 ® s' is shown in Fig. 19. Again, as m a y b e seen from our 

A 
Fig. 18. Reduction of 3 ® 3. 

F ig . 19. The reduction of 3 ® Ĵ  

discussion of mul t ip l ic i t ies , there cannot be three points in the middle for 

an i r reducible representa t ion: two belong with the boundary points and one 

r ema ins . Thus 

3 ® 3 1. (VI - 10) 



Before working o u t ^ ® ^ in detail , we note that 8 has two states 

at Y = 0 . Hence all Y values in ^ a re integral . The same must be t rue in 

all states that occur in 8̂ ® 8 ® 8 ® • • • . However, since the value Y for 

the state of highest weight in (a, b) is 

Y = 2M, = ——-
2 3 (VI - 11) 

we see that 

a = b (mod 3) (VI - 12) 

for all irreducible representations contained in 8 ® 8 ® 8_ ® • - • 

Let us now proceed to the explicit reduction of 3 ® 3 (Fig. 20). Let 

D 

°o«-
D 6 

+ 0 

^ 0 ^ S 6 
0 0 

Fig. 20. The states in 3 
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D 
+ 

^+ 

D 
0 

D 
0 

So 

So 

K^-

^ o > -

% > -

6_> = 

5) = 

^ > -

X , ) , 

P>, 

N ) , 

2 " > , 

H " ) . 

E ° > . 

(VI - 13) 

T h e n 

E - i | ^ ' ) = E _ i P , 6 „ ) = i . l D „ 5 „ ) - i . l D ^ 6 _ ) 

ID 6„) - ID, 6 > 1 l o o I + -
^ N/2 

(VI - 14) 

W r i t i n g 

l e a d s t o 

Aga in 

3Cpo«o>- P + ^ » - | ^ o > NJ2 

E.iis^>=:5l|2o>-

= - J ^ I Z ) , 
N/3 I -

E . g | ^ ^ > = E . g | D ^ . , ) = i . s „ a , ) = i . l S ° ) > 

E-i|P> = E _ , p ^ - „ ) = 4 | D ^ . „ ) = ^ | N ) , 

(VI - 15) 

(VI - 16) 

(VI - 17) 

(VI - 18) 

(VI - 19) 

(VI - 20) 
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E - i | E ° ) = E . , | S „ 5 j = - i . | S „ 6 _ ) = - ^ | H - ) . ( V I - 2 1 , 

E . 2 I N ) = E _ g | D „ . „ ) = - i . | D „ 6 _ ) = - ^ | S - > , ( V I - 2 2 ) 

E , | H ' ) = E . , | S„ 6 > = - - ' D 5 ) = ^ | 2 " > . 
3 1 " 3 l o - ^ 1 0 - ^ \ (VI - 23) 

Next c o n s i d e r 

E _ g ] P ) = E _ g | D ^ . ^ ) = - ^ ( | S ^ . ^ ) - | D ^ 6 _ ) ) . 

T h i s s t a t e is not i d e n t i c a l wi th I s " ) . It m u s t t h e r e f o r e be a l i n e a r combinat ion 

of | s ) and ano the r s t a t e a t tha t po in t , the i s o - s i n g l e t in t he ^ which we shal l 

ca l l | A ) . If we w r i t e 

lAo>°=lSo<ro) + a | D ^ 6 ^ ) + p | D ^ 5 _ ) 

and d e t e r m i n e a and (3 f rom 

( A ^ I S " ) = 0, (VI - 24) 

we find a - p = 0 so t h a t , a f ter n o r m a l i z a t i o n . 

/i 2 
AQ = ^ | S o ^ o > + -;j^i\^o^o^+ P + ^ - ) ) - (VI -25) 

The s t a t e i s not yet d e t e r m i n e d . If we t ake the s y m m e t r i c c o m ­

b ina t ion 

| X > = 4 ( | ^ 6 . ) + lDo^)+ IS^.J) , (VI-26) 

we o b s e r v e t h a t 

E ± i l X ) = E ^ g | X > = E ^ 3 | X ) = 0 , (VI - 27) 
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i . e . , Ix) is the 1 state in the decomp osition 

j^®2. = ,i ® A-

We also requi re that 
( X I A O ) = 0. (VI - 28) 

This fixes a such that 

K > = i ( K ^ ^ + l ° + ^ ^ - ^ K ^ o ) ) - ^^'-''^ 

We can now calculate the remaining matr ix elements: 

1 
( S ° | E _ 2 | P ) = ^ ^ 

(AJE 
0 

and s imi lar ly 

< s j E . 3 l N > = - ^ . 

( A J E . 3 | N ) = - i , 

(A° lEg |S" ) =i> 

/ ^ 0 | F | W ° ) - - ^ 

{•£ \E^\A ' ' 2.-r3' 

( A j E 3 l H ° ) = i - . 

We can conveniently summar ize the mat r ix elements by labeling the lines 

connecting different states on the J^weight diagram. Figure 21 shows the 

resul ts for & the dotted lines indicate the transit ions to the A„ state. 

T^ese ma t r ix elements a re essent ia l in the reduction o f ^ ® 8̂  

which we now c a r r y out. The elements of one of t h e ^ wiU be^labeled by 

(S"^ S% S ' , P , N, A°, "E' , E ° ) . those of the other by (IT , / , IT , K , 

X.0 A K ' K ° ) . The "vector addition" of weight diagrams is shown in 
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F i g . 2 2 , in wh ich the dots i n d i c a t e the o r i g i n a l ^ , the c r o s s e s t he s t a t e s in 

N 
_1_ 
N/6 

1 
" \ /6 , 

A 
N/6 

1 

V3 

A -i »A\ 2 

' 
1 •/ 

2 , / 

/A 1̂ /3 

2 A A 

^ ^ ^ ;/3 

/A 
A I A ^ 1 A A 
2 N/3 A V A 

1 
\ "N/6 

A1 
N/6 

Fig. 21. The matr ix elements of the Ê ^ in the representat ion 8. 
±a "^ 

X< 

XX %\ 

^T7f ^ 

X.K 

Fig. 22. The multiplicities in i 

We note that the corner points a r e nondegenerate. They must 

belong to the largest representat ion. Since for 8 we have (a, b) = (1 , 1) this 
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must be the representat ion (2, 2) whose dimensionality is 27. This is the 

first one we reduce out. 
+ + 

We s tar t with the state of highest weight, | S TT ). It is clear from 

Fig. 22 that repeated application of E . ^ will yield a quintet. The quintet lies 

on the M = 0 line and therefore is associated with hypercharge Y = 0. The 

r e su l t s , start ing with | S , TT ) , are 

P i ^ + + ) _ i | ^ o + \ , 1 , + 0) _ / 2 ^ | S A A ^ J L ° ^ 
- l l ^3 1 Nr3 1 ^ 3 V ^ ^2 

--A';'^^'")-^(ii-'-ai-°--'-^i-°'"-4iA 

etc. , where in each case the normalized wave functions have been enclosed 

in the pa ren theses . The full 64 combinations will not be worked out. Instead, 

the resu l t s will be listed and the not-ent i re ly- t r iv ia l steps will be pointed out 

along the way. 

The s tates with T = 2, Y = 0 a re 

I + +\ | S IT ) , 

- ^ ( 1 2 ° / ) + I s V ) ) , 

^\r:°v°) -^\i:\') -^Ai:'-^), 
\ /3 I N/6 ' N/6 I , , 

4 - ( |S °^ ' )+ |2"^°)), 
\/2 I I 

| S " I T ' ) . 

To get the first state of the quartet for Y = 1, we apply Eg to 
3 

\T!'V^) and then repeatedly apply E_^. The resul t s for T = - , Y = 1 a re 



^ ( l s V ) + | P . + )), 

^3 ( | r°K+)+ K ° p ) ) + ^ ( | s V ) + | N ^ + ) ) . 

; ;J-( |S°K°)+ ITT^N)) - ;^ ( |S"K"^> + K"P) ) , 

-^^ { |2"K°) + I T T ' N ) ) . 

The q u a r t e t wi th h y p e r c h a r g e T = — , Y = - 1 , ob ta ined in an 

ana logous way, is 

-I-( | s^K°)+ P ^ H ° » . 

^3 ( |S° K°>+ h°H°) ) - ;^ ( |S+K-)+ P A " » , 

4 - ( |s°K">+ | ^ ° V " ) ) + -L ( | s -K°)+ h ' s ° ) ) . 

We o b s e r v e tha t the two q u a r t e t s (which a r e s y m m e t r i c wi th r e s p e c t to each 

o the r about the o r ig in ) can b e obta ined f rom e a c h o t h e r ; the s t a t e s wh ich 

m a k e up one q u a r t e t a r e obta ined by r e f l ec t ing the o the r q u a r t e t in the 

o r i g in , i. e. , by the t r a n s f o r m a t i o n 

+ 
IT <r-> TT , 

K° <^ K ° . 

2 + 

P 

N 

«-̂  

«-^ 

^r-> 

r". 

>—« J 

^0 
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This t ransformation is called the hypercharge-conjugation transformation, 

or the R t ransformation. It will be used to simplify our work. 

The (T = 1, Y = 2)triplet, obtained by starting with 

P K ' ' " ) , is 

| P K + ) , 

i -2( |pK°)+ INK-')) , 

Then applying the R transformation to this yields the (T = 1, Y - -2) t r ip ­

let 

I H°K°), 

; i ( l S ° K - > + | H " K ° ) ) . 

|S"K-) . 

« «i 9 

• ® ® • 

® (§!(§) ® * 

9 ® ® I* 

« « « 

Fig . 23. States left after 19 of the 27 have been removed. 

We have obtained 19 of the 27 states in the highest r e p r e ­

sentation contained in ^ ® 8.. In the pattern of points (Fig. 23), the degen-

of the points in the layer immediately inside the boundary layer 

leads us to expect another t r iplet with Y = 0 and two doublets with Y = ± 1. 



This leaves one state, which must be an isosinglet with Y = 0. To find the 

first doublet (with Y = 1) we construct 

E |pK+)= A ( |P-°)+ | K ' S ° ) ) - ^ ( 1 P ^ ° ) + | K V » 
- 2 I 2 ^ 3 

3 

and note that this is not orthogonal to the state in T = ^ ^ Y = 1 at the 

same point. A state orthogonal to that one may however be obtained by 

taking an appropriate linear combination of E.g | P K^) with the third of 

the states (T = | , Y = 1). The state and its partner are 

4 (1P.°> + | K V ) ) - ^ (IP,") + | K V ) ) . 4 ( I ^ 'K°) + h^N),, 

-^ (|Nu°)+ |K°S°))+ A (|Nn°>+ |K°A°))+ ~ i \ ^ - ' )+ I ^ V ) ) . 
^60 ' ' - ^ "̂ 30 

Then for T = — , Y = - 1 , the R operation yields 

_L.(lH%»)+ IK°2°)), A ( | H V ) + |K"A°))+ A : ( | 2 r - ^ ) + | 2 ' K = ) ) . 
N/60 ' I " ' ' ' ^/20 ' ^30 

_ t ( | H V ) + l K - 2 ° ) ) - 4 _ ( l E V ) + | K - A ° ) ) ^ ^ ( K K 0 > + | . - E ° ) ) . 

To construct the triplet, we take a linear combination of 

E ( |2' '-K"'") + I Tr"'"p)) and the corresponding (T = 2, Y = 0) s tate, such 

that it is orthogonal to the la t ter . The (T = 1, Y = 0) tr iplet obtained in 

this way is 

JL(|PK°)+ IK^S°) - A (isV) + i^V)), 

^ ( | N K ° ) + |K°2;"))-7^-(lPK">+ 1 S V ) ) = A(l2:°n°) + lA°-°)). 
\fiO TTo"^' ' ' " ' " ^ 1 

i M N K-)+ | K ° H " ) ) + / I | ( | 2 ^ " ^ ° > + I^°A°) ) . 
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The set of 27 states in the representat ion is completed by 

taking a l inear combination of E_g | T = A I ' ^ T ' " ^ ^ ^ ^ ^"'^ ^^^ ^ z ^ ° 

states with (T = 2, Y = 0) and (T = 1, Y = 0) such that it is orthogonal to 

the last two. The resul t , for which T = 0, Y = 0, is simply 

; ^ | 2 % ° ) + J j l A % ° ) - ^ ( | P K - ) + l K ^ H - ) ) 

. J | ( | N l ° ) + KH°))+;7i^(A-">+|2^°-'>'-

To go on from here , we note that we started the Y = 1 quartet 

with the symmetr ic linear combination (l/-^2)( |S " ' 'K ) + | P ir )) . Use of the 

ant isymmetr ic combination orthogonal to it would clearly lead to another r e -
3 

presentation — the lO-dimensional representation with T = - , Y = 1 for which 

i^(ls^K+) - IPir ')). 

^ ( 1 2 V > - 1NU + » + ; ^ ( 1 S " K + ) - | - ° P ) ) . 

. ^ ( | 2 V > - | i r - p » + ; ^ ( l 2 ° K ° ) - | u ° N » , 

- ^ ( | S - K ° > = h ' N ) ) . 

Note that the resnl ts are always ant isymmetr ic combinations, so that all of 

them will be orthogonal to the ^ - which is as it should be . 

To get the next iso-mult iplet we apply E„g to the f irs t of the 

above states and get the (T = 1, Y = 0) tr iplet 

A J ( A . ° ) - ls°ir + ) ) .^( lPK°) - |S°K+)) A(l2^^°>- l̂ °"'̂ >' 

- ^ ( 1 ^ ' ^ " ^ - l ^ " - ' »^2^ ' l ^^"^ • 1SV) ) . ^ (1NK°) = |S°K°)) 

. i ( 1 S % ° > - |A°Tr° ) ) , 

,̂  _l_( |s-^°) " 1 S % " ) ) + ^ ( I N K - ) . l2:"K'')) + i (|s"ri°) = | A V ) ) . 
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Next app ly E .g to the f i r s t of t h e s e to get the (T = -̂  , Y - " I) s t a t e s 

A ( I S % ° ) - I S ° K ° ) ) - - ^ ( A K - ) - I S " - ' ) ) - A i s ° ^ ° ^ - 1 ^ ° ^ ° ^ ) ' 

^ ( | S " - ° - ) - l 2 ° K - ) ) + ^ ( | S - K ° > - | H % ' ) ) + | ( | H " T I ° ) - | A ° K 1 ) . 

F i n a l l y by i n s p e c t i o n , we obta in the (T = 0, Y - -2) s t a t e 

A ( | S ' K ° ) - IS°K-)). 

« <» • • 

« o • 

« 

• * 

F i g . 24. The p a t t e r n s for 10 and 10 . 

The r e s u l t i n g p a t t e r n is shown in F i g . 24. Th i s is the 1£ r e ­

p r e s e n t a t i o n . It is c l e a r tha t by s t a r t i n g wi th the a n t i s y m m e t r i c combina t ion 

A ( I P K " ) - INK"')) 

we can g e n e r a t e such a " t r i a n g l e " ups ide down by a p p l i c a t i o n of E _ . This 

wi l l be the 10, r e p r e s e n t a t i o n , which m a y be ob ta ined f rom the 10 by h y p e r ­

c h a r g e r e f l e c t i o n . The s t a t e s , l i s t e d for c o m p l e t e n e s s , a r e the fol lowing. 
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For T = 0, Y = 2: 

; ^ ( | P K ° ) - INK-*") ) . 

For T = A Y = 1: 

^ ( 1 P ^ ° ) - | 2 ° K M ) + ^ ( I S - ' K " ) - | N U + ) ) + I ( | P r i ° ) - 1 A ° K + ) ) , 

- V d N ^ " ) - | S ° K ° ) ) - 4 ( I s V ) - | P u - ) ) - i ( 1 N ^ ° ) - | A ° K ° ) ) . 
2^3 ' ' \lb ' ^ 

For T = 1, Y = 0: 

. J „ ( | S + 0 - ! s % + ) ) + 4 ( | H ° K ' ) - ! P K ° » + I (12%") - iA°iT + )), 
Z43 ' ' ^6 ' ^ 

. _ i _ ( | 2 - / ) - | 2 V ) ) + ^ ( | S - K ^ ) - |PK-)) - ^ ( I H ^ I O - |NK» » , 

. i (ls%°) - 1A%°)), 

J _ ( l s - . ° ) . Is".-)) - A(|S"K°^ - INK' ) ) - i ( |sV) - lA°^°))-
2N/3 ^ ' ' N/6 

3 ^r 

And finally for T = -̂  , Y = - 1 : 

_i ( I s V ) - | H ^ ^ ) ) , 
/̂2 ^' ' 

. J . ( 1 2 V ) . | H = - ' ) ) + - ^ ( | S ° K ° ) - | E » I T ° ) ) , 
;̂6 ' N/3 

A( |2 -K° ) . |H^ - ) )+ A ( | S ° K - ) . ISV)). 
N/6 ' ' Ni3 

^ ( | s - K - ) . | H " - - » . 

A glance at F ig . 22 shows that there still are many states on the Y = 0 axis. 

As we go one step in from the boundary there a r e six products (the terms 

With T ^ = l . and Y = 0 a re | . V > . | . ° 2 + ) / | A V \ | H ° K ^ ) . ! P K ° ) . 1 A ° ) ) 

of which we have found four: the quintet and tr iplet in 27̂  and the two t r i p ­

lets in 10 and \ ^ . Thus two more t r iplets a re expected. We now t ry to 

truct a state orthogonal to the states that have already appeared, viz. 



52 

^ ( 1 2 % + ) + | 2 - ' ^ ° ) ) , 
\IZ ' 

4 ( | P S ° ) + |S"K+))- / 5 ( | s % ° ) + |A°^^), 

^ ( | 2 \ ' ' > - | 2° iT+) ) - ^ ( | P K ° ) - | H ° K + ) ) - i ( | S % ° ) - | A ° ^ ^ ) . 

- ^ ( l s \ ° ) - ls% + )) - ^ ( I P K M - |E"i^))+ I ( | s \ " ) - |A°^')). 

A little algebra shows that the states orthogonal to these must have the general 

form 

a ^ { . / 2 ( | 2 \ ° ) - | r ° ^ - ' ) ) + ( | P K ° ) - |H"K+»} 

+ { / A | P K ° >+ l S ° K + ) ) + ( | A ° ) + |A%+))}. 
2 •• ^1 2 

The two parts have different symmetr ies and a re orthogonal to each other, so 

that it is natural to use each part separately to generate an octet each (as 

will be seen). 
Starting with the antisymmetric part , we obtain the normalized 

(T = 1, Y = 0) states 

_ ^ ( 1 2 ^ ° ) - 12°.+ ))+ ^ ( | P l ° ) - |H»K+)). 

- ^ ( 1 2 + . - ) = [ 2 - . + ) ) - ^ , 1 P K - ) - | H V ) ) + ^ ( ! N K ° ) - 1 H ° K ° ) , , 

^ d s " . " ) - 12%"))- - 1 (|NK" ) = |H-K°)). 

The remaining two doublets and the isosinglet are obtained in the standard 

way. They are listed below for completeness. 

For T = - , Y = 1: 

-^^(1S+K°) - [ N / })-^ (I P . " ) = jS°K+))+ i ( | P V > - !A°K+)), 

^ ( | p , - ) . ^ s V ) ) + ^ ( | N . ° ) . | 2 ° K ° » + i ( | N ^ ° ) = iA°K°)) . 
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F o r T = - , Y = - 1 : 

I , 1 - . - +v l _ + „ - v . _ 1 . , „ o „ o 
^ < l " " > - | 2 ' K ' » + ^ ( 1 S ° -

4b 

- | S ° K ° ) ) + I ( | S % ° ) - |A°K°)), 

A l s - K " ) . l s ° . - ) ) - A ( | S " ^ ° ) - 1S°K-))+ i (|H"ii°)- 1A°K")). 

F o r T = 0, Y = 0: 

\ (I P K " ) - |S"K+»+ \ ( | N K ° ) - | S ° K ° ) ) . 

F o r T = 1, Y = 0, the s y m m e t r i c oc te t is 

. J ^ O ( | A " - ' ) + | 2 : S » ) ) + ^ ^ O ( 1 P K ° > + |H°K+)), , 

^ g " ( | 2 % ° ) + | A ° . ' ' ) ) + ^ ' | ( | N K < ' ) + | A " K ' ' ) ) - ^ 2 ^ O ( | P K " ) + 

^ ^ ( | 2 - V > + | A ° U - » + ^ ' ^ ( | N K - ) + | S " K ° ) ) . 

H"K+)), 

F o r T = - , Y = 1: 

^ T o ( l ^ V > + | A ' "^'))n/^(!^-°>n^°^>>-NM<l'^^°^^i ' '^ ^̂  
• N / 2 0 

i ^ O N . " 
>+ |A°K°) ) - A o ( | N . ° ) + |2 : °K°) )=^^„(1P .= )+ l^-K )5. 

F o r T = | , Y = - 1 : 

' 1 , I -
Nf20 

3 ,1 « ( 5^(12%°)+ |A°K"» A f o ( | H ° - ° ) + | s ° K ° ) ) - ^ r o ( l - " ^ ^+ !̂  "̂̂ '̂ 
' 3 , , „ - ^ + . 

.0 

N / 2 0 
r ( | s V ) + |A°K-))+J | ( |H-.°)+ |2:°K-))-Ao(l^"K")+lH"-">)-



For T = 0, Y = 0: 

A , ^ o , o ^ . ^ | ^ o ^ o ^ , ^ , | ^ + , - ) , | 2 - . ^ ) ) 

. _ 1 _ ( | P K - ) + | H V ) ) = ^ 3 ( | N K ° ) + | H ° K " ) , 

We have now 

27 + 10 + 10 + 8 + 8 = 63 

states, and there clearly remains only the unitary singlet. Its wave function is 

totally symmetr ic , namely, 

- A - {|S°^°) + | A % ' ' ) + I S + . l + | 2 " / ) + I PK") + | H V ) 

+ | N 1 ° )+ |S°K°)}. , 

This concludes our reduction of ^ ® £. This method can be 

used for other reductions. Once the ideas are clear , short cuts can be taken 

with confidence. For example, consider the reduction of 8̂  ® 1,0. The addi­

tion of weight graphs yields the pattern shown in Fig. 25. The boundary is 

• i^ (g) ® « 

• X I 1® t ® 

® < X # 

® X @ 

® ® 

Fig. 25. The states for 8 ® 10. 
^ AAA, BJiy^ 
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seen to have a maximum-weight point with a = 4, b = 1. Hence the mul t i ­

plicity of that representation is 35. The boundary points other than the 

corners a re doubly degenerate, and removing these corners leaves a hexa­

gon with two "s teps" on each side. This just corresponds to the r ep resen ­

tation 27. Inside that we can only inscribe 10 and 8,(Fig. 26) if we take note 

of the fact that all representations have a = b (mod 3) as shown before. Thus 

10 = 35 + 27 + 1^ + 8. 
9 > > * • — < . 

Fig. 26. The reduction of 8 ® 10. 

A very useful observation ° is that in each irreducible r e ­

presentation there is only one isosinglet s tate . We can thus learn how many 

irreducible representat ions there a re in the decomposition and something 

about the value of - | (a. - b.) for these representat ions, labeled by the un­

known numbers (a . ,b . ) . Thus 8̂  ® 10 has the isotopic content; 

, 1 

;̂ Y= 1, T = A ^ = °' ^ = "'̂ '"̂  " "̂ ' "̂  ""2' 
3 „ n T _ i . Y - - 1 T = - ; Y = - 2 , T = 0. 10: Y = 1, T = -r- ; Y = 0, T = 1 , Y - i , i 2 ' 

AnA " 
K 

The isosinglets come from (Y = 1, T = ^ a ® ^^ = -^ ' ^ = 2>io' (Y = 0, T = 0)^ 

( Y = - 2 , T = 0 ) , „ , ( Y = 0 , T = 1)3 ffi (Y = 0, T = l),o . and(Y = - l , t ---^^ ® 

(Y = . 1 ' T = A 10 . Thus there are four irreducible representations in 

(1, 1) ®'(3, 0),^ one of which must be (4, 1). -The four are such that for two of 

them -— (a-b) = 0 and for two it is - 2 . 
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The wave functions which we have obtained allow us to find 

the matr ix elements of E in the 10, 10"\ and 27 representat ions in a man­

ner analogous to the way in which we found them for the ^ r e p r e s e n t a t i o n . 

The matr ix elements for lO^are exhibited in Fig. 27. Those of 10̂  have all 

signs changed. 

/2 
^ N/2 

1 

F ie . 27 The matrix elements of E in the representation 10. 

The techniques developed in this section will now be used to 

prove a very important theorem: In the reduction of the product 8̂ ® N, 

where N is some irreducible representation, N will occur no more than twice. 

This theorem will be proved diagrammatical ly. Figure 28 

shows the right-hand top corner of the weight diagram of some representation 

N with the multiplicities at each site of N indicated. When the weight of 8 is 

added vectorially to this graph, the result is the points labeled with crosses 
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in F ig . 28. The graph is not complete but the multiplicities at the points 

A (six), B (two), C (one), and D (two) a re correc t , regardless of N, pro -

vided N^is not t r iangular . (If it were , there would be only one state belong­

ing to N^at the site E, instead of two, and no state at F . ) 

-»«,^ [A] X^ [B] 

\ 

[ E ] F] 

Fig . 28. Some multiplicities in 8̂ ® N. The line denotes the 
original boundary of N .̂ 

Now the maximum state in N^® ^ ^ i H contain C, one each of 

the states at B and D, and (from our multiplicity rules) two states at A. 

The remaining states at B and D are contained in two irreducible represen t 

tations in N ® 8, since a single one would have to have a concave boundary 

D A B . . . . "liach of these irreducible representations "uses up" one of the 

states at A. This leaves two states at A, and either could belong to an N. 

This establishes the theorem. If N is tr iangular, the fact that it cannot 

occur more than once in 8 ® N can be shown in an analogous way. 

With the help of the powerful "Young tableau" techniques, it 

can be shown that actually N occurs exactly twice in 8̂ ® N unless it is " t r i = 

angular" (a or b = 0); in a t r iangular case it occurs jexactly once. With a 

little more attention to the states at the points A, B, C, • • •, the methods 

developed above could undoubtedly be used to prove this stronger resul t . But 

for our purposes (Sec. VII) the theorem proved above is sufficient. 
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VII. THE INVARIANT OPERATORS 

In our brief discussion of SUg (Sec. Il), we noted that each 

irreducible representation was character ized by a single number, the 

eigenvalue of Tg for the state of highest weight. This one-parameter 

characterization is reflected in the existence of one_ invariant operator 

(C in Eq. 11-17) that commutes with all the elements of the algebra. 

For SU , we have seen that two integers (a, b) completely 

character ize an irreducible representat ion; and by the same token we ex­

pect to be able to construct two independent invariant operators € ^̂  and Cg 

each of which commutes with all the elements E^^, Hj_ , Hg of the algebra 

and (of course) with each other. In order to construct these operators , we 
13 

follow a method outlined by Okubo, whose paper includes a direct proof 

that there are only two opera tors . 
We introduce the notation 

1 ^ 1 >,-
E l = ; ^ ^ 1 2 ' E - i = ; F ^--' 

E , = - ^ M , , , E.g = -^ M 3 , , (VII - 1 ) 
- 2 - ; ^ ^ 1 3 ' - - 2 - 4b ^ ^ ^ 3 1 ' 

^ ^ 2 3 ' E . 3 = ^ M 3 g . 

In the 3 X 3 m a t r i x r e p r e s e n t a t i o n , M , is s e e n to be the m a t r i x tha t has 

uni ty in the AB pos i t i on and z e r o s e l s e w h e r e . F r o m th i s o b s e r v a t i o n , it is 

obvious tha t the c o m m u t a t i o n r e l a t i o n s in t h a t r e p r e s e n t a t i o n , and h e n c e 

g e n e r a l l y , a r e 

[M M 1 = 6 M - 6 . M ^ „ . (VII - 2) 
I- A B ' CD-" BC AD DA CB 

S. Okubo, P r o g r . T h e o r e t . P h y s . (Kyoto) £ 7 , 9 4 9 ( 1 9 6 2 ) . 
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We can then identify H and Hg from the relations 

^ H , = [ E „ E . , ] = i [ M , g , M g J 
(VII - 3) 

= I ( M , , - M g g ) , 

and 

^ H , + i Hg = [ E g , E . g ] = i [ M , 3 . M 3 J ^^^^ _ ^̂  

= i (M^^-M33). 

Similarly 

Hence 
H^ = i (M^,+ Mgg-2M33), 
' 2 - 6 

1 
Z43 H i = 265 ( M i i - M g g ) . 

(VII - 6) 

On the other hand, M , , , Mgg , M33 are not defined completely in terms of 

H and H . If we impose the condition that 

M , , + M g g + M 3 3 = 0 , ( V n - 7 ) 

find 
M^j_ = Hg + N/3 Hj_, 

Mgg = Hg - ^3 H , , . (VII - 8 ) 

M 3 3 = - 2 H g . 

Now we consider the operator 

^AB= S ^ A F ^ F B -
(VII - 9) 
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This operator satisfies the commutation relations 

[ ^ A B ' ^ C D I = Z ^ A F % C ^ F D - ^ F D ^ C B > 
F 

= A « F C ^ A D - ^ A D ^ C F ' ^ F B 

6 X - 6 X . (VII - 10) 
" B C AD AD CB 

F r o m th i s it fol lows tha t 

1̂= E X A A = ? ' ^ A B % A <^""^^> 
A AB 

c o m m u t e s wi th al l M ; i . e . , it is an i n v a r i a n t o p e r a t o r . It i s a l s o e a s y to 

see that 

« 2 = I ^ A F ^ F G ^ ^ 2 - L ^^^AF^^FG^^^GA (VII - 1 2 ) 
AFG 

is a l s o an i n v a r i a n t o p e r a t o r . Of c o u r s e the o p e r a t o r s 

"^3= I ^ A B % C ^ C D % A ' 
ABCD 

e t c . , wi l l a l s o be i n v a r i a n t , but we only need two to c l a s s i f y the i r r e d u c i b l e 

r e p r e s e n t a t i o n . 

If we w r i t e 

'^Hg + ^/3 Hĵ  N/6 EJ^ /̂6 Eg 

V6 E . ^ Hg - N/3 H ^ /̂6 E„ (VII - 13) ]M = '' - 1 2 -̂  1 ^ 3 

N/6 E . g N/6 E _ 3 - 2 H g 

•we have 

C^ = T r I M ^ . (VII - 14) 

C , = T r M 3 . (VII - 15) 
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Both are easily written down in te rms of E , H, , and H , . The first is 
+ n 1 ±a' 

C^ = 6 (Hg2 + H;^2 + EJ^ B . i + E.J^ E ^ 

+ E g E . g + E.gEg+Eg E .3 + E . 3 E 3 ) , (VII-16) 

and using the commutation relations, we can write this as 

Cj_ = b (Hg2 + H^2 + 2E_^ E^ + 2E.gEg+ 2E .3 E3 + ^̂ 3 H j . (VII-17) 

The usefulness of these operators may be il lustrated by using 

them to find the position of an isosinglet (on the assumption that it exists) in 

an irreducible representat ion. The singlet state must satisfy 

E | ) = 0 . (VII-18) 

Hence 

-̂ 3 

i . e . . 
(VII-19) 

The value of mg will also be desired. For the representation 

in question, whose highest weight is (M, , Mg ), we have 

C , H < M , M g l c j M , M g ) = 6 ( M , 2 + M g 2 + ^ M j . (VII-20) 

For the singlet s ta te , 

C^ | 0 , m g ) = C^ l 0 , m g ) 

= 6 ( m g 2 + 2 E . g E g + 2 E 3 E . 3 ) l 0 , m g ) . (VII-21) 

We also calculate 

Cg = ( M , M , | c C g | M , M g ) . (VII-22) 
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It t u r n s out to be 

Cg = - 6 M g ^ + 1 8 M ^ 2 M g + 9M^2 + 9Mg2 

+ 12 N/3 M ^ M g + 6N/3 M ^ + 6 M g . 

A l s o one finds that 

(VII - 23) 

(C | 0 , m ) = [ -6 mg3 + 9mg2 - 3 m 2 
(VII - 24) 

+ 18 ( l - m g ) ( E . g E g + Eg E .3) ] ] 0 , m g ). 

C ^ - 6 m g 2 = Cg + 6mg3 - 9 m g 2 + 3 ^ g 

~~ 12 18 (1 - m g ) 

which , a f ter a l i t t l e a l g e b r a , can be w r i t t e n 

(mg + 2 M g ) ( m g - Mg - ^̂ 3 M^̂  - l ) (mg - Mg + '/3 M^ + 1) = 0. (VII - 25) 

M o r e o v e r the s ing le t m u s t l ie b e t w e e n the t o p and bo t tom l i n e s of the g r a p h , 

i . e . , s ince 

- A ^ 3 M^ + Mg) ^mg « ~ (̂ /3 M^ - Mg). (VH - 26) 

Then by u s e of 

A3 M^ ~ 2>M^= b ^ 0, 

it is e a s y to s ee tha t only the roo t 

mg = - 2 M g (VII - 27) 

is a c c e p t a b l e , a r e s u l t quoted e a r l i e r in S e c . IV. 

In c o n c l u s i o n , for c o m p l e t e n e s s , we b r i e f l y d i s c u s s the m a s s 

AB 
14 

f o r m u l a of G e l l - M a n n and Okubo. In E q . (VII - 10) we found quan t i t y X 

1 4 
The c o n s i d e r a t i o n s wh ich fol low cannot be m a d e c o m p l e t e l y s a t i s f a c t o r y 

w i t h o u t g o i n g into the a n a l y s i s of t e n s o r s of SU3 , which we do not want to do . 
The d i s c u s s i o n l e ans r a t h e r h e a v i l y on s o m e (he re u n p r o v e d ) s i m i l a r i t y to the 
r o t a t i o n g r o u p . 
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wh ich had the s a m e c o m m u t a t i o n r e l a t i o n s wi th M . „ as M . „ does i t se l f . 
AB AB 

Any q u a n t i t y l i ke t h i s w i l l be c a l l e d a v e c t o r o p e r a t o r in ana logy wi th the 

SUg (or the r o t a t i o n g roup) def in i t ion of a v e c t o r o p e r a t o r as one tha t obeys 

the c o m m u t a t i o n r e l a t i o n s 
[V., J T = i . . , , V„ . ( V I I - 28) 
•• 1 k-" ik i i 

The v e c t o r o p e r a t o r s in the r o t a t i o n g roup a r e j u s t a s p e c i a l type of i r r e d u c ­

ible t e n s o r o p e r a t o r s ; and the m o r e g e n e r a l i r r e d u c i b l e t e n s o r o p e r a t o r s in 

SU cou ld be c o n s t r u c t e d in the s a m e w a y . We do not do t h i s , h o w e v e r , b e ­

c a u s e s u c h a p r o g r a m would t ake us somewha t beyond the s i m p l e goals se t 

for t h i s p a p e r . 

We w i l l , h o w e v e r , spend a l i t t l e t i m e on the v e c t o r o p e r a t o r s — 

in p a r t i c u l a r on t h e i r m a t r i x e l e m e n t s b e t w e e n t h e s t a t e s of a given i r r e d u c ­

ible r e p r e s e n t a t i o n , i . e . , on {^. m,- mg- \x^^ | N , m , m g ) . The ana logous 

p r o b l e m in the c a s e of t he r o t a t i o n g r o u p is so lved wi th the he lp of the W i g n e r -

E c k a r t t h e o r e m . T h e r e one finds tha t 

( j , m | V j ^ l j , m . > = f ( j ) ( j , - l j j ^ l j , m . ) . (VII = 29) 

The p r o p o r t i o n a l i t y of ( j , m | v j j , m . ) to ( j , m | j j j , m 0 follows f rom the 

facts t h a t V t r a n s f o r m s l ike t he j = 1 r e p r e s e n t a t i o n of the r o t a t i o n g r o u p 

and tha t in the r e d u c t i o n of D (1) ® D (j), the i r r e d u c i b l e r e p r e s e n t a t i o n D (j) 

o c c u r s only o n c e . In the c a s e of SU3 . X ^ ^ t r a n s f o r m s l ike the 8 r e p r e s e n ­

t a t i o n . We h a v e a l r e a d y shown tha t in the r e d u c t i o n of 8 ® N, N o r d i n a r i l y 

o c c u r s t w i c e . Thus t h e r e w i l l be two t e r m s on the r i g h t - h a n d s ide of the 

g e n e r a l i z a t i o n of (VII - 29) to SU3 . The f o r m of the W i g n e r - E c k a r t t h e o r e m 

m u s t b e 

( a , b ; m j ^ ' m g | X ^ g l a , b ; m ^ m g ) 

= ( a , b ; m ^ m g ' [ M ^ ^ ^ | a, b ; m^ mg ) f ( a , b ) 

+ ( a , b ; m , . m ^ j ^ M ^ ^ M ^ ^ | a, b ; m , m g ) g (a, b ) . (VII - 30) 
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In his discussion of the symmetry-breaking interactions, 

Gell-Mann proposed that these t e rms have the transformations charac te r ­

istic of what we called a vector; i . e . , the symmetry violation has the 

transformation properties of the Hg operator in the ^ representat ion. We 

thus want 

(a, b; m^mg | X33 | a, b; mj_ mg ) 

= f'(a,b) ( a , b ; m ^ m g |Hg | a, b; m^ mg ) 

+ g(a ,b) ( a , b ; m ^ r o g | ^ ^ 3 0 ^ C 3 I ^ ' ^ ' ™1 ™2 ^' ' ^ H " ^ ^ ' 

Now 

But 

I . e . , 

Thus 

2 M3C ^ C 3 = ^ ^^-2^2 + E .3 E3 I Hg2 . JCg , 
C 

C^ = 6 (H^2+ Hg2 + { E ^ , E . ^ } + 2E.gEg + 2E_3E3 + Hg), 

i C , A 5^2 + i (T2-Hg2) + Hg, 

Kg = I C^ - (T2- Hg2) - 3 H g . 

This leads to the result that 

(a, b; m^mg IX33 | a ,b ; mj_mg) 

= A(a,b) + B (a,b) Y 

+ C (a,b) [T(T + 1) - ^ Y2] , 

1 ^^ 
since H = — Y. This yields the mass formula of Gell-Mann and Okubo. 

15 
The above derivation is just a synopsis of the content of reference 13. 
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It shou ld be noted tha t for b o s o n s , i n v a r i a n c e u n d e r c h a r g e 

con juga t ion d e m a n d s t h a t the m a s s s p e c t r u m be i n v a r i a n t u n d e r Y -• - Y . 

F u r t h e r m o r e , t he b o s o n p o l a r i z a t i o n o p e r a t o r i s wha t would be c a l c u l a t e d 

in f ie ld t h e o r y and it g ives the c o r r e c t i o n s to the s q u a r e of the boson m a s s . 

H e n c e , for b o s o n s we a r e j u s t i f i ed in w r i t i n g 

H.2= [ i „ 2 + 61x^2 [ T ( T + 1) - i Y 2 ] . 

F o r n u c l e o n s , 

M = Mo + 6Mj^ Y + 6Mg [T(T + 1) - 4 Y2 ] . 

And fo r t he t r i a n g u l a r r e p r e s e n t a t i o n s , for wh ich 

T = ± - | Y + 1, 

we ge t 

M = Mo' + SMj^' Y. 

In a l l c a s e s in which i t h a s b e e n p o s s i b l e to a s s o c i a t e a se t 

of i - s p i n m u l t i p l e t s w i th a s ingle r ep re sen t a t i on^o f SU3 , the m a s s f o r m u l a 

of G e l l - M a n n and Okubo has w o r k e d v e r y w e l l . " " The only dev ia t ion is in 

the p r e d i c t i o n of the c. m a s s in t e r m s of the p^ and K'" m a s s e s . In th i s 

s i t u a t i o n , h o w e v e r , as po in ted out by S a k u r a i , ' " an i m p o r t a n t p e r t u r b i n g 

inf luence m a y b e the p o s s i b l e e x i s t e n c e of the u n i t a r y s ing le t v e c t o r 9 , 

ev idence fo r w h o s e e x i s t e n c e is beg inn ing to c o m e in . 

T h e s e r e m a r k s conc lude our d i s c u s s i o n of the s t r u c t u r e of 

SU C u r r e n t w o r k in the e x p l o r a t i o n of SU3 in e l e m e n t a r y - p a r t i c l e p h y s i c s 

is L o r e d y n a m i c a l in c h a r a c t e r r p a p e r s on th is sub jec t do not dwel l on the 

p u r e l y k i n e m a t i c a s p e c t s of the s u b j e c t . It i s hoped tha t th i s p a p e r wi l l 

s e r v e to m a k e a d v a n c e s in t h i s f ield m o r e a c c e s s i b l e to a l a r g e r g r o u p of 

p h y s i c i s t s . 

I S J . J . S a k u r a i , P h y s . R e v . L e t t e r s £ , 4 7 2 ( 1 9 6 2 ) . 

See for e x a m p l e R. C u t k o s k y , J . K a l c k a r , and P . T a r j a n n e , P h y s . 1 7 

L e t t e r s 1. 9 3 ( 1 9 6 2 ) . 
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